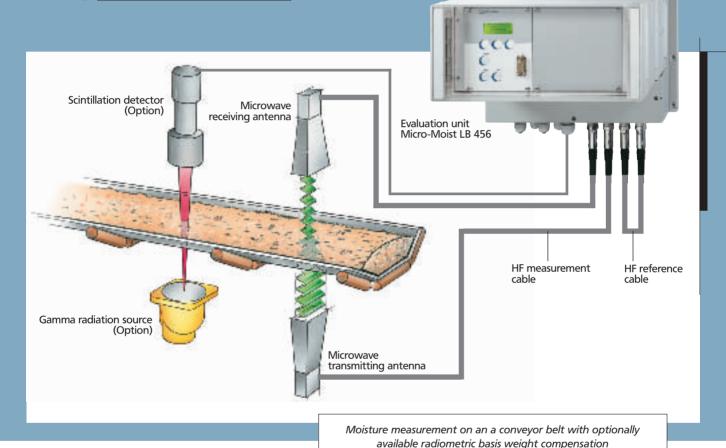


Contactless Measurement of Water Content and Moisture

Micro-Moist LB 456



Micro-Moist LB 456

Micro-Moist LB 456 has been designed for the non-contact, on-line measurement of the moisture of different kinds of products on a conveyor belt, in a chute, bunker or container.

Utilizing microwave technique, the

entire material cross-section in the range of transmission is covered, ensuring representative on-line measurements for quality assurance and process optimization.

Measurement Arrangement on a Conveyor Belt

The antenna pair and the optionally available radiometric basis weight measurement are mounted on a frame. Both measuring paths transmit the material vertically. Oblique transmission may be recommended only in exceptional cases. Instead of the radiometric basis weight measurement, a height indicator may be

employed to compensate for the layer thickness, provided the material density remains constant; another alternative is product smoothing.

The evaluation unit is installed in the direct vicinity of the antenna. The HF reference cable is a waveguide circulator serving as a reference for the measurement signal.

Moisture Measurement in a Chute

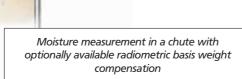
The moisture measurement of bulk goods in a chute offers a fixed geometry of the product being measured, and this has a positive effect on the measured data. In many cases, basis weight compensation is not required when performing moisture measurements in a chute. Plastic or ceramic chutes are available, depending on your application. Chutes are ideal for the measurement of all kinds of bulk goods up to a product temperature of 500°C.

A round measurement chute made of stainless steel can be supplied for special applications. This measuring cell is lined with PTFE and, typically, has a nominal width of 150 mm.

Fields of Application

The moisture measuring system Micro-Moist LB 456 measures the water contents in solid matter and bulk goods which are not conductive, or only to a minor degree.

Typical fields of application are in the primary industry, chemical-, building material-, wood-, paperand food-industry.


Examples of successful Micro-Moist applications

- Bauxite
- **■** Bentonite
- Brown coal
- **■** Fertilizer
- **■** Fodder
- **■** Grain
- **■** Foundry molding sand
- **■** Gypsum
- Wood chips
- Wood fibers
- Limestone production Sugar beet chips

- Potatoe chips
- Almonds
- Methyl cellulose
- **■** Mineral fiber plates
- Salt
- Rice
- Sand
- **■** Chipboard chips
- Hard coal
- Starch pellets/Starch
- Clay mass

Chute Measurement **Arrangement**

The measurement chute is either installed directly in the product stream or a bypass. Constant and slow product flow through the chute during measurement has to be ensured. The sensors are installed on the measurement chute.

System Configuration

Micro-Moist LB 456 consists of the evaluation unit and a microwave measuring path.

The microwave measuring path consists of either

- Transmitting and receiving antenna
- Measuring cell
- Chute

each including high frequency measurement and reference cables.

Option: Basis weight compensation

The radiometric measuring path consists of a lowactivity Gamma radiation source in a shielding container and a highly sensitive scintillation detector.

Engineering Data

The following engineering data is required to select the microwave sensors and to submit a quotation:

Type and profile of conveyor system

Conveyed product, grain size

Product temperature

Measuring range

Typical loading height

Product speed

Required accuracy

Microwave horn

Microwave measuring cell nominal width 150 mm

Installation of horn antenna and radiometric measuring path on a plastic measurement chute

Principle of Measurement

The material layer to be measured is transmitted by microwaves. The free water molecules rotate in the electromagnetic field. As a result, the propagation velocity of the microwaves is slowed down (phase shift) and their intensity is weakened (attenuation). Both effects are measured by Micro-Moist and used as a direct indication of the moisture contents.

Micro-Moist utilizes a wide frequency band. In each

measurement cycle, phase shift and attenuation are measured at a variety of individual frequencies and a plausibility analysis is performed.

This, in particular, is the benefit of the wide-band technique: interfering resonance and reflection effects which occur with demanding measurement geometries can be reliably suppressed.

In general, only non-conductive material (product, walls, conveyor systems) can be transmitted. Steel-reinforced conveyer belts may be transmitted only under certain circumstances.

Option: basis weight compensation

The radiometric measuring path consists of a Gamma radiation source in a shielding container and a highly sensitive scintillation detector. If the layer thickness and density of the material being measured varies significantly, an additional radiometric irradiation measurement may compensate for this influence.

This situation may occur on conveyor belts with varying loading or in chutes with varying bulk weights of the product being measured.

The starting point of this kind of measurement is the basis weight dependent attenuation of Gamma rays passing through the medium being measured.

Benefits of this Technology

- High selective sensitivity to free water molecules.
- A transmission measurement covers the entire material cross-section in the range of radiation; thus, representative measurement is possible even in case of inhomogeneous moisture distribution.
- Contactless transmission measurement, without any influence on the product or wear of the measuring system.
- Measurement of both microwave parameters phase shift and attenuation: variations of grain size, product temperature and composition may cause errors in pure attenuation measurements. These errors are minimized when running a phase measurement or a combined phase and attenuation measurement.
- Wide-band technique: interfering reflections and resonances often occur in mono-frequency measuring systems. Such interferences are suppressed by Micro-Moist's wide-band technique.

Your Benefit

High selective sensitivity to water: High accuracy and long-term stability even with difficult products

On-line measurement: Expensive mechanical sample separators and sampling devices are not required

Transmission measurement: Representative measurement even on inhomogeneous products due to measuring large material quantities

Compensation of material variations: Layer thickness and density variations are corrected through radiometric basis weight compensation

Contactless measurement: No caking or abrasion on probes, no influence on product being measured by the microwaves

Simple installation: Directly on existing conveyor belts, chutes, bunkers, containers, etc.

High operating safety and system availability

Technical Data LB 456

Evaluation unit LI	B 456
Assembly	1. wall housing made from ABS,
Assembly	protection type IP65
	H = 237, $W = 355$, $D = 267$ mm
	Weight: approx. 8.0 kg
	2. wall housing made of stainless steel,
	protection type IP66
	H = 310, W = 400, D = 280 mm
Auviliant aparaut	Weight: approx. 13.5 kg
Auxiliary energy	115/230 V AC +10 %,-15%; 47-65 Hz
Power consumption	17 VA (AC), max. 30 VA (AC)
Transmitting power	max. 0.005 mW
Temperature range	Operating temperature: 0 +50°C
	(273 323 K), no condensation
	Storage temperature: –20 +80°C
	(253 353 K), no condensation
Display	LCD display with 4 x 20 characters,
	illuminated. Data input via foil keypad.
	Dialog guidance with softkeys.
	Dialog: several languages. Data protec-
	tion through freely selectable password.
Inputs	
Analog input	$0/4$ -20 mA, load 50 Ω , e.g. for
	temperature compensation
Digital inputs	DI1: Stop measurement
	DI2: Start / Stop measurement
	DI3: Product 1 / Product 2
PT-100 connection	Measuring range –50 +200°C
	(223473 K),
	Measurement tolerance < 0.4°C
Outputs	
Analog output	0/4 -20 mA, load max. 500 Ω.
Digital outputs	DO1: relay for collective failure message
	DO2: relay for measurement stop
	DO3: relay for min./max. limit value
	Loading capacity:
	AC: max. 400 VA
	DC: max. 90 W
	AC/DC: max. 250 V or max. 2 A,
	non-inductive
	\geq 150 V: Voltage must be
	grounded
24 V output	24 V DC, ≤ 100 mA,
	short circuit-proof
Interfaces	RS 232 and RS 485 for data output

HF-connections	
N-sockets	Signal in/out for 50 Ω HF-cable
N-sockets	Reference in/out for 50 Ω HF-cable
HF-cable	
Measuring cable Reference cable	50 Ω , N-connectors on both sides,
	length: 1.5 m; 2 m (max. 4 m)
	50 Ω , N-connectors on both sides,
	length from 1.5 m up to sum of both
	measuring cables
Sensors	
Microwave	1. horn antenna
Antenna	(Transmitter and receiver)
	2. spiral antenna
	(Transmitter and receiver)
Measurement chute	Internal dimensions:
	H = 360, W = 360, D = 250 mm
	1. plastic PP-H,
	max. temperature 100°C
	2. ceramics, max. temperature 500°C
Measuring cell	Nominal diameter 150 mm,
	stainless steel
Basis weight mea	asurement (OPTION)
Detector	Scintillation counter
	with Nal (TI) crystal
	Long-term stability ± 0.1%
	Stainless steel housing
	Cable entry: M12 and M16
	Weight: approx. 18 kg
	Type Crystal Irradiation Prot. class
	LB 5441-02 40/35 front-side IP 65
	LB 5441-03 50/50 front-side IP 65
	LB 5401-03 50/50 lateral IP 65
Source	Nuclide ¹³⁷ Cs, typical activity
	370 MBq (10 mCi)
Shielding	Shielding container LB 7440
Design modifications	may occur without notice.

DASTEC

Dastec S.R.L.

Representantes / Distribuidores Exclusivos: Hipólito Yrigoyen 850, piso 3º Of.335 C1086AAN Buenos Aires - Argentina Tel.: (54-11) 4343-6200 // 4331-2288 Fax: (54-11) 4334-3120

Fax: (54-11) 4334-3120 E-mail: dastecsrl@dastecsrl.com.ar Web: www.dastecsrl.com.ar

